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ABSTRACT

The plane strain vibration frequencies of an infinitely long hollow cylinder

are calculated exactly with the aid of a high-speed electronic computer, for a

range of wall thicknesses and azimuthal node numbers, and for a variety of

boundary conditions. These latter cover the cases: outer radial surface free,

or- supported, or clamped; inner surface free, or supported, or matched to a

gas filling the inner cavity. In the last case, we calculate the attenuation of

sound in the cylinder wall, in addition to the eigenfrequencies. Our computa-

tions of mode frequencies disclose that: (i) the shear-compressional wave

coupling in the solid is very weak (except for low frequency); (ii) for the gas-

filled cylinder, the modes are very close either to the gas quasi-modes (gas

in a rigid-walled cylinder), or to the solid qv-.si-modc3 (shell with free inner

surface), depending on the geometry.

I. INTRODUCTION

A fundamental problem of the classical theory of elasticity is the determina-

tion of the normal modes of elastic vibration of a hollow cylinder. In principle,

this problem is solved by writing down the solution of the elastic wave equation

and then determining the mode frequencies by the requirement that an appro-

priate set of boundary conditions be fulfilled. In practice, the problem is

unfortunately not so simple.

The major difficulty is that the determination of the characteristic frequen-

cies generally requires an enormous amount of numerical work, particularly

because the secular equation involves cylinder functions whose arguments
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depend on the frequency to be computed. Since the cylinder problem possesses

a multitude of independent parameters (cylinder wall thickness, elastic con-

stants, and wave numbers) and since a considerable number of sets of boundary

conditions must be investigated, it is clear that a complete solution of the

problem would involve a formidable program of numerical computation.

Of course, in simple special cases, it is possible to obtain the modes for

any wall thickness from the exact theory, without undue labor. Such calcula-

tions previously have been done for the purely radial dilational modes of free,
1

infinitely long cyl- ders, and for the purely axial shear modes of free and

clamped infinite cylinders. 2

Now it is feasible, with electronic computers, to calculate exactly the

vibration modes for thick-walled cylinders in other cases as well. Already

Herrmann and Mirsky3 have presented such calculations for axially symmetric

longitudinal waves in free, infinitely long cylinders. They gave numerical

results for the lowest mode and a range of wall thicknesses. Greenspon4

1G. S. Field, Can. J. Research A17, 141 (19S9); J. A. McFadden,

J. Acoust. Soc. Am. 26, 714 (1954); A. B. Bassett, Proc. London Math.

Soc. 21, 53 (1889).

2J. H. Baltrukonis and W. G. Gottenberg, J. Acoust. Soc. Am. 31,

734 (1959).
3G. Herrmann and I. Mirsky, J. Appl. Mech., Trans. Am. Soc.

Mech. Engrs. 78, 563 (1956), 79, 1 (1957).
4 J. E. Greenspon, J. Acoust. Soc. Am. 31, 1682 (1959), J. Aero. Space

Sci, 27, 37 (1960).
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calculated the lowest few flexural modes for free, infinitely long cylinders.

In addition, he has treated the flexural modes of the finite length cylinder,

again with free sides, but with ends either free or freely-supported. More

recently, Gazis has published extensive calculations for the infinite hollow

cylinder which is stress-free at both inner and outer radial surfaces - first,

for plane-strain vibrations, later for the general case involving axial motion
5

also. He considered a range of geometries and axial wavelengths and several

values of the azimuthal quantum number for the lowest dozen modes or so.

The purpose of the present paper is to calculate exactly the eigenfrequencies

of the infinite length thick-walled cylinder for boundary conditions not treated

in the above work (refs. 3, 4, 5), i.e., for other than stress-free radial sur-

faces. In these computations, we shall consider plane-strain vibrations in the

infinite hollow cylinder for a range of wall thicknesses. For these modes,

however, we shall extend Gazis' work as follows.

First of all, the infinite hollow cylinder will be treated for a number of new

combinations of boundary conditions of the usual type. Thus, we shall consider

the outer surface to be either clamped, r supported, or free, while the inner

surface is either supported, or free. These investigations lead to the discovery

that the thickness eigenmodes 6 are generally either almost purely radial dila-

tational or almost purely azimuthal shear. The frequencies of these modes are

5D. C. Gazis, J. Aco,,st. Soc. Am. 30, 786 (1958), 31, 568, 573 (1959).
6 These are modes with at least one displacement node or antinode

occurring across the thickness of the cylinder wall.
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in fact very nearly the same as for the corresponding pure modes. This indi-

cates that the shear-compression coupling is quite weak for such modes.

Secondly, we shall considei ,ne very interesting situation of a gas filling

the inner part of the cylinder, 7, 8 while the outer surface is again either

clamped, or supported, or free. In this case we are dealing with the acoustic

modes of a two-phase system, where no matter how tenuous the gas inside the

cylinder may be, the modes of the system are often drastically different from

those calculated by neglecting the presence of the gas. We find that, depending

on the ratio of inner to outer radius, the eigenmodes are very closely similar

either to the modes of a shell with free inner surface (solid quasi-mode) or to

the modes of a gas in a rigid-walled cylinder (gas quasi-mode).

7 Some special examples of this case have been given previously in a

theoretical treatment of the problem of combustion instability in a rocket motor

charged with an inside-burning tubular grain. See, (a) F. T. McClure, R. W.

Hart, and J. F. Bird, J. Appl. Phys. (scheduled for publication in May 1960),

and (b) F. T. McClure, R. W. Hart, and J. F. Bird, Proceedings of the

Princeton-A. R. S. Solid Propellant Research Symposium (Jan. 28, 29, 1960).

Other such two-phase systems have been treated previously by C.

S~lceau and M. ZAgnescu, Compt. rend. 247, 812 (1958) and F. 1. N.

Niordson, Trans. Roy. Inst. Tech. Stockholm, no. 73 (1953) for very simple

cases, and by R. D. Fay, J. Acoust. Soc. Am. 24, 459 (1952) with a vitiating

error. Also see M. A. Biot, J. Appl. Phys. 23, 997 (1952).
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Finally, as a rather novel application of elasticity theory, we compute

exactly the attenuation of sound in the solid wall for the gas.-filled cylinder,

by only slightly extending the eigenfrequency computation program.

II. DISPLACEMENT AND STRESS IN CYLINDER

Here, we shall merely display the form of the solution, since the methods

of derivation are standard procedure and readily available elsewhere. 9 In

the notation of ref. 7, we have for the displacement vector ., and stress

tensor, z , the following components:

S + i e i t cos(m) {AIm(kcr) + A 2Ym(kc r)Srti1Mc 2I

+ s Jm(k r) + B2 Ym(ksr)] (1)
sJ

i meS sin(m p) AiJ (kr)+k

krk
54, B1m-sr {B 2~ r £_L DA

+ [B J (kr) + BY (ksr)] (2)1m 2mIns

S- i2L eiWt cos(mq') v Alr(kcr) - A2Yr(kcr)Prr r rrc 2y

+ BlJl(k3r) + B2Yl(ksr)j (3)

P i2e iWtr sin(m 0) A ll(kcr) + A2 Yl(kcr)

+ BlJP (ksr) + B2 Y (ks-)J (4)

9P. M. Morse and H. Feshbach, Methods of Theoretical Prysics (McGraw-

Kil Book Company, Inc., New York, 1953), pp. 142, 1840.
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where

l(x) = m ,() 

X (k r) 2"2n

i J, (X) + XJm(W 1 + u x2c (6)
r (X) =m(5

j (x=JW (+ xJm (x (7)

and the y functions similar but with J--Ym. Also,we have used,
2 w z  k2  W w2

k;= T P k (8a)
cd 

With thM .fmitar. e Jti.onahips

c +2L and c L (8b)
d .- cs p

where X and g are the Lame/ elastic moduli, p is the density of the solid

cylinder, and m is the (integer) angular wave number. The determination of

the amplitudes A1 , A2 , B, B2 by applying the boundary conditions accom-

plishes the solution to the problem.

I. THE BOUNDARY CONDITIONS

In this section we specify the various sets of boundary conditions that we

shall apply to the displacement and stress functions, Eqs. (1-4) a the inner

and outer boundaries of the cylinder, i.e., at r = a, r = b. (Since the cylinder

length is tnfinite, we apply no boundary conditions on planes perpendicular to

the i-axis.)
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1. Conditions on Outer Cylindrical Surface

On this surface r = b, we shall apply any one of the three sets of condi-

tions

Prr = P rV =0, atr=b, (9a)

S r=PrV =0, atr=b, (9b)

Sr = S =0, atr=b, (9c)

corresponding to free, supported, or clamped ouside surface, respectively.

2. Conditions on Inner Cylindrical Surface

The inner surface (r = a) of the hollow cylinder we shall consider to be

either free

Prr - P r =0, atr=a, (10a)

or supported

Sr =Prq, = 0, at r = a, (10b)

or to match in both stress and displacement to a gas filling the inside of the

cylinder. Assuming the gas exerts no tractive force on the solid surface, this

last case requires

Prr + i W ZgSr = rep = 0,at r = a (lOc)

where Z is the acoustic impedance for the gas at the boundary wall,g

Zg = [p/U]r=a , with p, u being acoustic pressure and radial particle velocity

in the gas. With acoustic gas pressure of the form poeiWtcos (mnW)J (k r), we

i have from u i ap that the impedance is
PgW ar

Z -ip cJ (k a)/ ka (11)
g gg 9m gka
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where p is gas density, and kg w/c, with c being sound velocity in gas.

We note that Eqs. (10a), (10b) are special cases of (10c), for Z ---p0 andg

Z - 0, respectively.

When we apply these various sets of boundary conditions to the elastic

wave described by the displacement and stress of Eqs. (1) . (4) , we will

find in each case that four simultaneous equations which are linear and

homogeneous in the constants A1 , A2 , B1 , B2 , need to be satisfied. For a

non-trivial solution, the determinant formed from the coefficients of the A's

and B's must be zero. This condition determines the eigenfrequencies of the

system, so that in the following we are to be concerned with finding the fre-

quency roots of this secular determinant for each set of boundary conditions.

IV. DIMENSIONS AND PHYSICAL CONSTANTS OF THE SYSTEM

The secular equation for the oscillation frequencies (f = w/2 r) will in

general involve the dimensions a, b, of the cylinder, and the density and elastic

constants of both the cylinder and the gas inside the cylinder. For the empty

cylinder, these quantities fall into three dimensionless groups, a/b, cb/cs, and

a (Poisson's ratio); for the gas filled cylinder, two additional parameter groups

appear, namely Pg/p, and cg/c s . Clearly, a complete hivestigotion over the

whole parameter field would require an undesirably large effort. In this modest

investigation, we have Conftned our attention to a study of the dependence on

only a/b and wb/cs, while selecting the constants o = 0.38, pg/p = 1/160, and

cg/c s - 10/3.08 as representative values of the remaining quantities. Rather

than present the results in terms of the two dimensionless parameters which

we have considered., Xowvever, we elect to display the mode frequencies as a

V4
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function of inner radius for a selected value of b, and c., because we believe

that this presentation facilitates a more concrete feeling for the nature of the

4
results. We shall use b = 5.75 cm, c5 = 3.08 x 10 cm/sec. (These values

correspond to X = 4.813 x 10u dyne/cm2 and ;L = 1. 52 x 1 dyne/cm2 )

Finally, in our illustrative calculations of sound attenuation in the solid wall,

we shall use the dilatational and shear viscosities X1 = 200 poise, 77 = 200 poise,

respectively. 7

V. EXACT NUMERICAL EIGENFREQUENCIES

1. Clamped, Supported and Free Boundaries

Here we present our results for the six sets of boundary conditions speci-

fled by Eqs. (9), (1ua), (10b), viz., outer surface either clamped or supported

or free, iin3r surface either supported or free.

The characteristic frequencies were calculated on the "Univac -Scientific"

for several values of m. Roots were sought for frequencies up to 25,000 cps,

corresponding to wb/cs z= 29.4. The method of computation was to select a

value of a and then calculate the determinantal roots by an interval-halving

technique. Doing this for about 10 values of a from 2.87 to 5.75 cm was suffi-

cient to give the mode-maps for these cases, since the curves are smooth,

These results are shown in Figs. 1 to 6, as graphs of frequency vs inner

radius/outer radius.

Fig. I shows the plane-strain modes of the completely free cylinder (cf.

refs. 4, 5). Those modes such that the frequency f becomes infinite as

a-d' b are the thickness modes defined in Sec. I. We follow Gazis 4 in calling

the remaining pair of modes "ring modes". Figures 2-6 illustrate how different

- - ~-.-~,~---* - - . -- --- --- -, --- 77
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sets of boundary conditions affect both thickness and ring modes.

Consider first the ring modes. The lower of these in Fig. 1 is a flexural

mode, which has non-, zero frequency only for m> 2, while the upper is an
4

extensional ("breathing") mode. For each of Figs. 2-6, the extensional

freedom i removed (Sr = 0 at r = a and/or r = b) and the ring-extensional mode

disappears. In Figs. 5 and 6 the ring-flexural mode is also absent, since the

flexural freedom has been removed (S = 0 at r = b). Note that for Figs. 2, 3,

and 4 the ring-flexural mode has zero frequency only for m = 0.

The thickness modes also exhibit a regular behavior as boundary conditions

are changed. One group of these modes (labeled "S" in Figs. 1 - 6) has pre-

dominantly shear wave characteristics, while the remaining thickness modes

(labeled "W1 in Figs. 1 - 6) form a group with predominantly dilatational wave

character. This is particularly evident from the manner in which the frequency

curves for each group are affected by the boundary conditions. Thus the S-mode

curves for free and for supported boundaries are very nearly identical, while

both of these are vastly different from the S curves for clamped boMdaries

(see the two sets of figures, 1 - 4 and 5 .. 6). On the other hand, the D-mode

curves for supported and for clamped boundaries are strikingly alike while

both of these differ widely from the D curves for free boundaries 1 0 (see the two

10The similarity of the D curves of ig. 1 to those of Iligs. 3,6,

despite the difference in boundary conditions, is due to the fact that in each oi
A

these cases the boundary conditions imply n X = b - a, n = 1, 2, 3.... , where

A is the (ill-defined) radial wavelength.
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sets of figures, 3, 6 and 2, 4, 5).

These conclusions are fortified by an inspection of the machine calcula-

tions for each mode. For this discloses that indeed the S-modes have displace-

ment and stress fields largely shear in character (terms involving B1 , B2

dominate in Eqs. (1)-(4) while the D-modes have displacement and stress

largely dilatatioral in character (terms with A1 , A2 dominate in Eqs. (1) - (4))

It appears then that the eigenfrequencies of the S-modes and D-ranides are

astonishingly close to those ef pure shear and pure dilatational waves, respec-

tively (except for the lowest modes of very thick shells). To a lesser degree,

the stress and displacement fields are similar to those of pure modes. Thus,

it Is clear that theshear and dilatational waves are only very weakly coupled

by our boundary conditions, and that the "frequency mixing" is extremely small.

These statements are, of course, exactly true for axially symmetric modes

(m = 0 in Eqs.(1) ,- (4), also cf. ret *4).

C.
\.
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2. Gas-Filled Cylinder

We now turn to the mode maps for the three sets of boundary conditions

given by Eqs. (9) with (10c), corresponding to a cylinder filled Vth a "stifff'

gas, while its outer surLface is either free, or supported, or clamped.

The numerical work was considerably more complicated here than for the

cases described previously (Sec. V, 1). Thic is because the f vs a curves for

the gas-filled cylinder are somewhat jagged, and at some points in the f -a

plane two modes come close together. The method of computation adopted was

to trace out each mode curve separately as a function of a, by a slope-projection

technique. Where two modes approach each other closely, accidental jumping

from one to the other was avoided by collapsing the interval until Z (k. a)

varied smoothly. We have done these calc:.ations for several values of m.

In reL 7, the mode- maps for m = 0, clamped outer surface, and m-- 2,

clamped,supported or free outer surface, have already been presented. Here

we display in Figs. 7 - 12 the mode maps for m = 0, 1, 3 not heretofore

published.

The axially symmetric (m = 0), or pure radial modos are shown in Figs.

7,8 for free and supported outer surface, re-spectively. We have plotted only

the dilatational modes, since in this case, the sheaf modes are not coupled to

the gas and thus are the same as in Figs. 1 - 6. As might ble expected, the

mode frequencies correspond rather closely to either the solid or gas quasi-

modes, i.e., the modes of a solid shell with free inier surface, or the modes

of a gas in a rigid walled cylinder, respectiveiy. These quasi-modes, where
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different from the actual modes, are indicated, for example, by the dashed

lines in Fig. 8. Since the interface boundary conditions for the quasi-modes

are mutually exclusive, the modes of the two-phase system avoid the inter-

sections of dashed lines, and alter their character in such neighborhoods from

quasi-modes of one medium to those of the other.

Figs. 9, 10, 11 show the first azimuthal modes (m = 1) for free, supported

and clamped outer surface, respectively. Here the modes of the two-phase

system are not individually pure shear or pure dilatational, as they are when

m = 0, but combinations of both, so that the mode-maps appear rather compli-

cated. We note that the "splitting" of modes at gas quasi-mode and solid quasi-

mode intersections is influenced not only by the mismatch in acoustic proper-

ties of the solid and the gas, but also by the relative amounts of shear and

dilatational motion in the solid. For example, compare Fig. 11 with Fig. 5,

where we see that where a gas quasi-mode intersects a type "' solid quasi-

mode, the splitting is much larger than where it intersects a type "'S" solid

quasi-mode. This may be presumed to occur because the gas exerts no shear

on the solid, and couples directly only to the dilatational motion - and, as we

saw in Sec. V. 1, the "S-modes" have little dilatational character, while the

"D-modes" are largely dilatational. 11

Finally, Fig. 12 shows the third azimuthal (m = 3) modes of the cylinder

with supported outer radial surface.

1 1 For further qualitative discussion of the modes of the two-phase system,

see ref, 7b.:-
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VI. ATTENUATION OF SOUND IN. CYLINDER WALL

We shall now calculate the rate of dissipation of elastic wave energy in

the wall of the gas-filled cylinder (cf. ref. 7a). In a stationary state, this

is equal to the rate at which energy flows into the cylinder wall across the
12

inner surface (r = a), so that, in the acoustic approximation, the dissipation

rate per unit length of solid wall is

m (kga) j.01 Real part of r]4 r =a

where p0 is the gas pressure amplitude (Sec. M. 2). The real part of the

boundary admittance is given to first order in the coefficients of expansive

friction () and shear viscosity (77) by7a

iWS 2 1 1j a a (12)Re ( ) WLrri; 1 (2
rr rrja

We note that, for the physical constants used in this work (Sec. IV), the first

order expression (12) should be accurate to a few percent up to frequencies

,v 100 kc.

The derivatives in Eqs. (13) were calculated during the process of finding

the characteristic frequencies of the gas-filled cylinder (Sec. V. 2). Once the

eigenfrequency for a given a was determined, A (or g) was varied slightly

12The energy flux at r = b is zero for all boundary conditions treated in

this paper (see Sec. HI).
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and, for the same a and the same frequency, the coefficients Al. A2) B 1 ,

B2 were recalculated as minors of the secular determinant. The deriva-

tives are then obtained from Eqs. (1), (3), and the real part of the boundary

admittance from Eq. (12). The dilatational part of the damping (A1 = 200 poise,

77 = 0) and the total damping (X1 = 77 = 200 poise) are shown separately in the

figures.

Some attenuation calculations for the m = 2 modes have already been pre-

sented in ref. 7a. Here we display the results for the m = 0 and m = 1 modes

of the cylinder with supported outer smrface (Figs. 13 and 14). The admit-

tances are plotted as functions of a/b along those portions of the modes which

are closest to the lowest gas quasi-mode (cf. Figs. 8 and 10); since they are

very large except very close to the gas quasi-mode. In Fig. 15, we have plotted

the admittance for a first azimuthal ring-mode (cf. lowest curve in Fig. 10) for

the supported boundary at r = b. Note that the damping is about 10,000 times

larger for the ring-mode than for the thickness modes.
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VII. CONCLUSION

In this paper we have been concerned primarily Vth exact calculation of

the plane-strain eigenfrequencies of an infinitely long, hollow cylinder of

arbitrary wall thickness. We have considered free, supported and clamped

radial surfaces in heretofore unstudied combina.ions, In addition, we have

presented new mode-maps (frequency vs geometry) for a gas-filled cylinder.

Finally, we have evaluated the atteiuation of sound energy in the thick

cylindrical shell.

From a study of our results for the diverse boundary conditions it has

appeared that the thickness eigenmodes may be regarded as consisting of two

distinct classes, the first being almost purely radial dilatational waves, (D

class), the second almost purely azimuihal shear waves, (S class). The

sharpness of this dichotomy evidences very weak shear-compressional

coupling, so that the thickness modes should be easily obtainable from the pure

modes by perturbation theory. The development of such an approximate theory

will be the topic of a subsequent paper by one of the authers.

The calculations for the gts-filled cylinder showed that the mode frequen-

cies are very close either to those of the gas quasi-modes or to those of the

solid quasi-modes, depending on the radial dimensions of the cylinder and the

number of nodes in the radial direction.
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